Conxuntu

Conxuntu
metaclase y conceutu matemáticu
clase, formalización (es) Traducir y multiconjunto (es) Traducir
Cambiar los datos en Wikidata

En matemátiques, un conxuntu ye una coleición d'elementos considerada en sí mesma como un oxetu. Los elementos d'un conxuntu, pueden ser les siguientes: persones, númberos, colores, lletres, figures, etc. Dizse qu'un elementu (o miembru) pertenez al conxuntu si ta definíu como incluyíu de dalguna manera dientro d'él.

Exemplu: el conxuntu de los colores del arcu la vieya ye:

AI = {Colloráu, Naranxa, Mariellu, Verde, Azul, Añil, Violeta}

Un conxuntu suel definise por aciu una propiedá que tolos sos elementos tienen. Por casu, pa los númberos naturales, si considérase la propiedá de ser un númberu primu, el conxuntu de los númberos primos ye:

P = {2, 3, 5, 7, 11, 13, ...}

Un conxuntu queda definíu namái polos sos miembros y por namás. En particular, un conxuntu puede escribise como una llista d'elementos, pero camudar l'orde de dicha llista o añader elementos repitíos nun define un conxuntu nuevu. Por casu:

S = {Llunes, Martes, Miércoles, Xueves, Vienres} = {Martes, Vienres, Xueves, Llunes, Miércoles}
AI = {Colloráu, Naranxa, Mariellu, Verde, Azul, Añil, Violeta} = {Mariellu, Naranxa, Colloráu, Verde, Violeta, Añil, Azul}

Los conxuntos pueden ser finitos o infinitos. El conxuntu de los númberos naturales ye infinitu, pero'l conxuntu de los planetes nel Sistema Solar ye finito (tien ocho elementos). Amás, los conxuntos pueden combinase por aciu operaciones, de manera similar a les operaciones con númberos.

Los conxuntos son un conceutu primitivu, nel sentíu de que nun ye posible definilos en términos de nociones más elementales, polo que'l so estudiu puede realizase de manera informal, apelando a la intuición y a la lóxica. Per otru llau, son el conceutu fundamental de la matemática: por aciu ellos puede formulase'l restu d'oxetos matemáticos, como los númberos y les funciones, ente otros. El so estudiu detalláu riqui pos la introducción d'axomes y conduz a la teoría de conxuntos.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne