Determinant — çoxluq bir matris ilə bağlı xüsusi düzülüş.
Bir A matrisin determinantı det(A) və ya det A şəklindədir.
Determinant modul işarəsi tərkibində yazılır.
2 × 2 ölçülü matris halında determinant belə hesablanır:

Oxşar olaraq, 3 × 3 ölçülü A matrisinin determinantı:

Bu hesablamada 2 × 2 ölçülü hər bir matrisin determinantı A matrisinin kiçik xətti matrisi adlanır. Bu prosedur oxşar şəkildə n × n ölçülü istənilən matris üçün tətbiq edilə bilər.