Hipocikloida

Hipocikloidu opisuje tačka na kružnici koja se, bez trenja kotrlja sa unutrašnje strane druge kružnice.[1]
Pretpostavimo da se po unutrašnjosti kružnice poluprečnika a kotrlja bez trenja kružnica poluprecnika b, .
Neka je koordinatni početak u centru kružnice .
Kružnicu ćemo postaviti tako da dodiruje kružnicu sa unutrašnje strane u tački presjeka sa x osom.
Posmatrajmo putanju koju opisuje tačka kada se kružnica ravnomjerno kotrlja u smjeru suprotnom kretanju kazaljke na satu. Pretpostavimo da je poslije vremena t ta tačka prešla u tačku ).
Uslov da je kotrljanje bez trenja, znaći da je dužina luka kružnice jednaka dužini luka kružnice .
Odnosno
Ako se kružnica ravnomjerno kotrlja onda je pređeni put proporcionalan vremenu t. Tj.
pri ćemu je k brzina kotrljanja.
Dakle, ako uzmemo da se kružnica kotrlja za a dužnih jedinica u jedinici vremena dobijamo
pa se ugao može tretirati kao vrijeme.
Odredimo sada koordinate tačke M u koordinantnom sistemu xy. Koordinate centra kružnice na kojoj se nalazi tačka M su:
Postavimo koordinatni sistem uv tako da mu koordinatni početak bude u centru te kružnice K, a koordinatne ose paralelne sa x odnosno sa y osom. U tom koordinatnom sistemu koordinate u i v tačke M su :
Iz
dobijamo
[2]
Neka je cio broj, odnosno , možemo pričati o dužini luka i površini hipocikloide.
Duzina luka hipocikloide je duzina svodova , tj dužina krive koju opise posmatrana tačka dok ne stigne do početnog polozaja.
Površina hipocikloide je površina koja je ograničena sa uzastopnim svodovima hipocikloide .
  1. ^ Kotrljajući hipocikloid
  2. ^ Hypocycloid

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne