Ovaj članak ili neki od njegovih odlomaka nije dovoljno potkrijepljen izvorima (literatura, veb-sajtovi ili drugi izvori). |
U matematici, kompozicija funkcija formirana kompozicijom jedne funkcije drugom, predstavlja primjenu prve funkcije na rezultat primjene druge na argument. Funkcije f: X → Y i g: Y → Z se mogu komponovati tako što se prvo primjeni funkcija f na argument x i potom primjeni funkcija g na rezultat prethodne primjene. Na taj se način dobija funkcija g o f: X → Z definisana sa (g o f)(x) = g(f(x)) za svaki x u X. Notacija g o f se čita kao "g kružić f" ili "g komponovano sa f".
Kompozicija funkcija je uvijek asocijativna. To jest, ako su f, g i h tri funkcije sa odgovarajuće odabranim domenama i kodomenama, tada je f o (g o h) = (f o g) o h. Budući da je svejedno gdje se stavljaju zagrade, mogu se slobodno izostaviti, bez uticaja na konačni izračun.
Kao posljedica toga skup bijektivnih funkcija f: X → X formmira grupu u odnosu na operator kompozicije.
Funkcije g i f komutiraju jedna sa drugom ako g o f = f o g. Općenito kompozicija funkcija nije komutativna. Komutativnost je specifična osobina koje imaju samo pojedine funkcije u posebnim okolnostima. Naprimjer, samo kad ; za svaki negativni je prvi izraz nedefiniran. (Ali inverzne funkcije uvijek komutiraju i pritom stvaraju identitetu.