Nepravi integral

Preporučuje se čitaocu da, prije čitanja članaka, bude upoznat sa antiderivacijama, integralima i graničnim vriejdnostima.

U kalkulusu, nepravi integral je granična vrijednost određenog integrala, kao se posjednja tačka intervala integracije približava bilo određenom realnom broju ili ∞ ili −∞, ili, u nekim slučajevima, kada sa dvije strane teži ka graničnoj vrijednosti.

Slika 1

U nekim slučajevima, integral

se definiše bez obzira na granicu

ali se drugačije ne može izračunati. Ovo se najčešće dešava kada se funkcija f, koja se integriše od a do c, ima vertikalnu asimptotu u c, ili ako c = ∞ (pogledajte: Slika 1 i Slika 2).

U nekim slučajvima, integral od a do c nije ni definisan, jer su integrali i pozitivnih i negativnih dijelova f(xdx od a do c beskonačni, ali granična vrijednost, ipak, može postojati. Takvi slučajevi su "pravi nepravi" integrali, npr. njihove vrijednosti se ne mogu definisati, osim kao te granične vrijednosti.

Slika 2

Integral

može se interpretirati kao

ali, prema matematičkoj analizi, nije neophodno interpretirati ga na taj način, jer se može interpretirati kao Lebesgueov integral u intervalu (0, ∞). Na drugu stranu, korištenje granične vrijednosti određenih integrala u zatvorenom intervalu, je jako korisno samo ako se računaju tačne vrijednosti.

U suprotnosti,

ne može biti interpretiran kao Lebesgueov integral, pošto je

Zbog toga je to "pravi" nepravi integral, čije vrijednosti su date preko

Možemo govoriti o singularitetima nepravog integrala, misleći na one tačke produžene brojne linije realnih brojeva u kojim je korištena granična vrijednost.

Takvi integrali se često zapisuju simbolično kao i standardni pravi integrali, možda sa beskonačnosti kao granicom integracije. Ali to prikriva proces traženja granične vrijednosti. Korištenjem "naprednije" Lebesgueovog integrala, umjesto Riemannovog integrala, može se, u nekim slučajevima, zaobići ovaj problem, ali ako se jednostavno želi dobiti određeni rezultat, ta metoda nam možda neće pomoći.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne