52 relacije ekvivalentnosti u skupu s 5 elemenata, prikazano kao 5×5 logičkih matrica (obojena polja, uključujući ona u svijetlosivoj boji, predstavljaju jedinice; bijela polja predstavljaju nule.) Indeksi redova i kolona bijelih ćelija su povezani elementi, dok različite boje, osim svijetlo sive, označavaju klase ekvivalencije (svaka svijetlosiva ćelija je svoja klasa ekvivalencije).
U matematici, relacija ekvivalentnosti je binarna relacija koja je refleksivna, simetrična i tranzitivna. Relacija "jednak je" je kanonski primjer relacije ekvivalencije, gdje za bilo koje objekte a, b i c važi:
a = a (refleksivno svojstvo),
ako je a = b onda je b = a (simetrično svojstvo), i
ako su a = b i b = c onda je a = c (tranzitivno svojstvo).
Kao posljedica refleksivnih, simetričnih i tranzitivnih svojstava, bilo koja relacija ekvivalencije pruža particiju temeljnog skupa u odvojene klase ekvivalencije. Dva elementa datog skupa jednaki su međusobno ako i samo ako pripadaju istoj klasi ekvivalencije.