Baricentre

Aquest article tracta sobre baricentre d'un triangle. Si cerqueu baricentre (centre de masses), vegeu «Centre de massa».

El baricentre o centroide d'un triangle és el punt que es troba a la intersecció de les mitjanes, línies que uneixen els vèrtexs i el punt mitjà del costat oposat. Agafant una d'aquestes línies, el baricentre es troba a 2/3 de distància del vèrtex i 1/3 del costat oposat. El baricentre és un punt notable.

Si els vèrtexs del triangle són and el baricentre C es defineix com a

El baricentre coincideix amb la noció física de centre de massa

  • El baricentre d'{A, B} és el centre de massa del segment [A;B], o sigui d'una barra d'extrems A i B, de massa uniformement distribuïda.
  • El baricentre d'{A, B, C} és el centre de gravetat del triangle ABC, suposant-li una densitat superficial uniforme (per exemple si tallem un triangle de cartró. Correspon al punt on es tallen les mitjanes. El triangle es mantindrà en equilibri (inestable) a la punta d'un llapis o d'un compàs, si aquest està situat just sota del centre de massa. El baricentre d'un triangle té, a més la propietat de pertànyer a la recta d'Euler.
  • El baricentre de quatre punts {A, B, C, D} de l'espai és el centre de gravetat del tetraedre, suposant-li una densitat volúmica uniforme. Correspon al punt on es tallen els segments que uneixen cada vèrtex amb l'isobaricentre de la cara oposada.

Es pot generalitzar l'anterior en qualsevol situació.

Isobaricentres

La coincidència del baricentre i el centre de gravetat permet localitzar el primer d'una forma senzilla. Si agafem el tros de cartró abans comentat i l'aguantem verticalment des de qualsevol dels seus punts, girarà fins que el centre de gravetat (baricentre) se situï justament en la vertical del punt de subjecció; marcant aquesta vertical sobre el cartró i repetint el procés aguantant des d'un segon punt, trobarem el baricentre en el punt d'intersecció.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne