En àlgebra lineal, una base d'un espai vectorial de dimensió n és un conjunt de n vectors α1, ..., αn amb la propietat que tot vector de l'espai es pot expressar de forma única com a combinació lineal dels vectors de la base. Les representacions matricials de les transformacions lineals també estan determinades per la base escollida. Com que sovint és convenient treballar amb més d'una base per un espai vectorial, té una importància fonamental disposar d'una eina per transformar de forma simple les representacions en coordenades de vectors i aplicacions respecte a una base a les seves representacions equivalents respecte a l'altra base. Una tal transformació d'una base a l'altra s'anomena canvi de base.
Tot i que emprarem la terminologia d'espais vectorials, i el símbol R pot representar el cos dels nombres reals, els resultats que veurem també són certs si R és un anell commutatiu i substituïm espai vectorial per R-mòdul lliure.