La geometria de l'esfera de Lie[1] és una teoria geomètrica del pla o l'espai en què el concepte fonamental és la circumferència o l'esfera. Fou introduïda per Sophus Lie al segle xix.[2] La idea principal que condueix a la geometria de l'esfera de Lie és tractar les rectes (o plans) com a circumferències (o esferes) de radi infinit i tractar els punts del pla (o de l'espai) com a circumferències (o esferes) de radi zero.
L'espai de circumferències en el pla (o esferes a l'espai), incloent-hi punts i rectes (o plans), resulta ser una varietat coneguda com a quàdrica de Lie (una hipersuperfície quàdrica a l'espai projectiu). La geometria de l'esfera de Lie és la geometria de la quàdrica de Lie i les transformacions de Lie que la preserven. Aquesta geometria pot ser difícil de visualitzar perquè les transformacions de Lie no preserven els punts en general: els punts es poden transformar en circumferències (o esferes).
Per treballar-hi, les corbes del pla i les superfícies de l'espai s'estudien a través dels seus aixecaments de contacte, que estan determinats pels seus espais tangents. Això converteix en naturals els conceptes de circumferència osculadora d'una corba i les esferes de curvatura d'una superfície. També permet tractar de manera natural les cíclides de Dupin i obtenir una solució conceptual del problema d'Apol·loni.
La geometria de l'esfera de Lie es pot definir en qualsevol dimensió, però els casos del pla i l'espai tridimensional són els més rellevants. En el cas del pla, Lie observà una semblança notable entre la quàdrica de Lie d'esferes en 3 dimensions i l'espai de rectes d'un espai projectiu de dimensió 3, que és també una hipersuperfície quàdrica d'un espai projectiu de dimensió 5, anomenada la quàdrica de Klein o de Plücker. Aquesta semblança menà Lie a obtenir la seva famosa «correspondència recta-esfera» entre l'espai de rectes i l'espai d'esferes a l'espai tridimensional.[3]