Pla

Per a altres significats, vegeu «Pla (desambiguació)».
Representació isomètrica de la intersecció de dos plans perpendiculars a l'espai tridimensional.

En matemàtiques un pla és una superfície imaginària de dues dimensions, infinita i sense curvatura. És un dels elements bàsics de la geometria. Juntament amb el punt i la recta és un dels tres conceptes fonamentals de la geometria clàssica. Els plans són infinits i es poden definir mitjançant:

  • Tres punts no alineats.
  • Una recta i un punt que no pertany a aquesta recta.
  • Dues rectes que s'intersecten.
  • Dues rectes paral·leles.

Els plans se solen anomenar amb lletres de l'alfabet grec.

En un sistema de coordenades cartesianes, un punt del pla queda determinat per un parell ordenat, anomenats abscissa' i ordenada del punt. Mitjançant aquest procediment, a tot punt del pla corresponen sempre dos nombres reals ordenats (abscissa i ordenada), i recíprocament, a un parell ordenat de nombres correspon un únic punt del pla. Conseqüentment, el sistema cartesià estableix una correspondència biunívoca entre un concepte geomètric com és el dels punts del pla i un concepte algebraic com són els parells ordenats de nombres. A coordenades polars, per un angle i una distància. Aquesta correspondència constitueix el fonament de la geometria analítica.

L'àrea és una mesura d'extensió d'una superfície, o d'una figura geomètrica plana, expressada en unitats de mesura anomenades unitats de superfície. Per a superfícies planes el concepte és més intuïtiu. Qualsevol superfície plana de costats rectes, per exemple un polígon, pot triangular triangular i es pot calcular la seva àrea com a suma de les àrees d'aquests triangles. Ocasionalment s'usa el terme "àrea" com a sinònim de superfície, quan no hi ha confusió entre el concepte geomètric en si mateix (superfície) i la magnitud mètrica associada al concepte geomètric (àrea).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne