![]() |
Aquest article o secció no cita les fonts o necessita més referències per a la seva verificabilitat. |
En matemàtiques, l'associativitat o propietat associativa és una propietat que pot tenir una operació binària. Significa que quan una expressió conté dos o més elements seguits dels mateixos operadors associatius, l'ordre de les operacions no altera el resultat, sempre que no es modifiqui la seqüència dels operands. És a dir, canviar els parèntesis en una expressió no modifica el resultat. Per exemple
Tot i que els parèntesis han estat canviats, el resultat de l'expressió no ha estat alterat. Com que la suma de nombres reals satisfà aquesta propietat, diem que "la suma de nombres reals és una operació associativa".
L'associativitat no ha de ser confosa amb la commutativitat. La commutativitat permet canviar l'ordre o la seqüència dels operands de l'expressió, metre que l'associativitat no ho permet. Per exemple,
és un exemple d'associativitat perquè els parèntesis han estat canviats (i per tant l'ordre en què s'efectuen les operacions), mentre que els operands 5, 2 i 1 apareixen en el mateix ordre d'esquerra a dreta a l'expressió. En canvi
no és un exemple d'associativitat, sinó que de commutativitat, perquè la seqüència de l'operand canvia quan el 2 i el 5 intercanvien les posicions.
Les operacions associatives són abundants en matemàtiques, i de fet la majoria de les estructures algebraiques requereixen explícitament que les seves operacions binàries siguin associatives. Tanmateix, moltes operacions destacades són no-associatives; un exemple estàndard és el del producte vectorial.