En matemàtiques, la quadratura d'una superfície consisteix a buscar-ne l'àrea. Històricament, consistia a buscar un quadrat que tingui la mateixa superfície que la figura original. Els problemes de quadratura eren l'origen de problemes per al desenvolupament del càlcul, i introdueixen conceptes importants de l'anàlisi matemàtica. En l'inici de la història de les matemàtiques, el problema de quadratura més difícil era la quadratura del cercle, que aviat es va veure impossible fent servir construccions amb regle i compàs. Fins al final del segle xvii, el càlcul integral no estava desenvolupat, i els càlculs de les àrees de figures geometriques implicaven la utilització de mètodes d'aproximació, com el mètode d'exhaustió d'Arquímedes o el mètode dels indivisibles de Cavalieri.
La recerca de quadratures va fer un salt endavant (1669-1704) gràcies a Leibniz i Newton qui, amb el desenvolupament del càlcul infinitesimal, van trobar la relació entre quadratura i derivada.
Posteriorment, es va vincular la recerca de les quadratures a la de les primitives: l'àrea de la superfície delimitada per les rectes x = a i x = b, l'eix Ox i la corba d'equació y = f(x), on f és una funció positiva, ve donada per .