Temperatura

Per a altres significats, vegeu «Temperatura (desambiguació)».
Infotaula de magnitud físicaTemperatura
Tipusfunció d'estat Modifica el valor a Wikidata
SímbolT i Θ Modifica el valor a Wikidata
Simulació de la vibració tèrmica d'un segment d'una proteïna, l'amplitud de la vibració s'incrementa amb la temperatura.

La temperatura és una magnitud física variable de la matèria que expressa quantitativament les nocions comunes de calor i fred. Els objectes de baixa temperatura són freds, mentre que els nivells de temperatures més altes es coneixen amb els noms de tebi o calent. La temperatura es mesura quantitativament amb termòmetres, que poden ser calibrats respecte a diferents escales de temperatura.

A gairebé tot el món es fa servur l'escala Celsius (°C) per a la mesurar la temperatura. Aquesta escala té el mateix escalat incremental que l'escala Kelvin, usada pels científics, però fixa el seu punt nul en els 273,15 kèlvins, 0 °C = 273,15 K, el punt de congelació de l'aigua.[nota 1] Tanmateix, hi ha alguns pocs països, sobretot els Estats Units, on encara s'utilitza l'escala Fahrenheit a la vida diària, una escala històrica a la qual l'aigua es congela a 32 °F i bull a 212 °F.[1]

A efectes pràctics de la mesura de la temperatura dins dels camps de la ciència, el Sistema Internacional d'Unitats (SI) defineix una escala i una unitat per a la temperatura termodinàmica basant-se en un segon punt de referència fàcilment reproduïble com és la temperatura del punt triple de l'aigua.[2] Per raons històriques, el punt triple de l'aigua ha estat fixat en 273,16 unitats[3] de l'interval de mesura, que ha estat anomenat kelvin[4] (en minúscula)[4][4][5] en honor del físic escocès William Thomson (Lord Kelvin) que va definir per primera vegada l'escala. El símbol del kelvin és K (en majúscula).[4][5]

La temperatura és una de les principals propietats estudiades en el camp de la termodinàmica, en aquest camp són particularment importants les diferències de temperatura entre diferents regions de la matèria, ja que aquestes diferències són la força motriu de la calor,[6] que és la transferència de l'energia tèrmica. Espontàniament, la calor flueix només de les regions de major temperatura a les regions de menor temperatura. De manera que si no es transfereix calor entre dos objectes és perquè ambdós objectes tenen la mateixa temperatura.

Segons l'enfocament de la termodinàmica clàssica, la temperatura d'un objecte varia proporcionalment a la velocitat de les partícules que conté,[7] no depèn del nombre de partícules (de la massa) sinó de la seva velocitat mitjana: a major temperatura major velocitat mitjana. Per tant, la temperatura està lligada directament a l'energia cinètica mitjana de les partícules que es mouen en relació al centre de massa de l'objecte. La temperatura és una variable intensiva, ja que és independent de la quantitat de les partícules contingudes a l'interior d'un objecte, ja siguin àtoms, molècules o electrons, és una propietat que és inherent al sistema i no depèn ni de la quantitat de substància ni del tipus de material. Per tal que hom pugui determinar la temperatura d'un sistema, aquest ha d'estar en equilibri termodinàmic. Es pot considerar que la temperatura varia amb la posició només si per a cada punt hi ha una petita zona al seu voltant que es pot tractar com un sistema termodinàmic en equilibri. A la termodinàmica estadística, en comptes de partícules es parla de graus de llibertat.

En un enfocament més fonamental, la definició empírica de la temperatura es deriva de les condicions de l'equilibri tèrmic, que són expressades al principi zero de la termodinàmica.[8][9] Quan dos sistemes són en equilibri tèrmic tenen la mateixa temperatura.[10][11][12] L'extensió d'aquest principi com una relació d'equivalència entre diversos sistemes justifica la utilització del termòmetre i dona els principis per construir instruments de mesura.[13][14] Tot i que el principi zero de la termodinàmica permetria la definició empírica de moltes escales de temperatura, el segon principi de la termodinàmica selecciona una única definició com a la preferida, la temperatura absoluta,[15][16][17][18][19] coneguda com a temperatura termodinàmica.[20] Aquesta funció correspon a la variació de l'energia interna pel que fa als canvis a l'entropia d'un sistema. El seu origen natural, intrínsec o punt nul és el zero absolut, punt on l'entropia de qualsevol sistema és mínima. Encara que aquesta és la temperatura mínima absoluta descrita pel model, el tercer principi de la termodinàmica postula que el zero absolut no pot ser assolit per cap sistema físic.[21]


Error de citació: Existeixen etiquetes <ref> pel grup «nota» però no s'ha trobat l'etiqueta <references group="nota"/> corresponent.

  1. «grau Fahrenheit». Gran Enciclopèdia Catalana. Barcelona: Grup Enciclopèdia Catalana.
  2. Resolució número 10 de la 23ª CGPM (2007)
  3. Resolució número 3 de la 10a Conferència General de Pesos i Mesures (CGPM) del 1954.
  4. 4,0 4,1 4,2 4,3 Resolució número 3 de la 13ª CGPM (1967/68).
  5. 5,0 5,1 BIPM: Opuscle de SI Section 5.2 Arxivat 2012-11-01 a Wayback Machine.
  6. T.W. Leland, Jr. «Basic Principles of Classical and Statistical Thermodynamics» p. 14. «Consequently we identify temperature as a driving force which causes something called heat to be transferred.»
  7. Gandia, Vicent. Manual de Termodinàmica. segona. València: Universitat de València, 1998 (Educació. Materials.). ISBN 84-370-2319-X. , pàg. 267-268
  8. Gandia, Vicent. Manual de Termodinàmica. segona. València: Universitat de València, 1998 (Educació. Materials.). ISBN 84-370-2319-X. , Capítol 1, pàg. 21 i ss.
  9. J. S. Dugdale. Entropy and its Physical Meaning. Tayler & Francis, 1996, 1998, p. 13. ISBN 978-0-7484-0569-5. «This law is the basis of temperature.» 
  10. Maxwell, J.C. (1872). Theory of Heat, tercera edició, Longmans, Green, Londres, pàg. 32.
  11. Planck, M. (1897/1903). Treatise on Thermodynamics, traduït per A. Ogg, Longmans, Green, Londres, pàg. 2.
  12. Tait, P.G. (1884). Heat, Macmillan, Londres, capítol VII, pàg. 39-40.
  13. F. Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, 1965, p. 102. 
  14. M. J. Moran, H. N. Shapiro. Fundamentals of Engineering Thermodynamics. 5a ed.. John Wiley & Sons, Ltd., 2006, p. 14. ISBN 978-0-470-03037-0. 
  15. Maxwell, J.C. (1872). Theory of Heat, tercera edició, Longmans, Green, Londres, pàg. 155-158.
  16. Tait, P.G. (1884). Heat, Macmillan, Londres, capítol VII, secció 95, pàg. 68-69.
  17. H.A. Buchdahl. The Concepts of Classical Thermodynamics. Cambridge University Press, 1966, p. 73. 
  18. Truesdell, C.A. (1980). The Tragicomical History of Thermodynamics, 1822-1854, Springer, Nova York, ISBN 0-387-90403-4, Secció 11H, pàg. 320-332.
  19. Kondepudi, D. (2008). Introduction to Modern Thermodynamics, Wiley, Chichester, ISBN 978-0-470-01598-8, secció 32., pàg. 106-108.
  20. Carnot, Sadi; Rudolf Clausius, William T. Kelvin. Escrits fonamentals sobre el segon principi de la termodinàmica. Barcelona: Institut d'Estudis Catalans. Editorial Pòrtic. Eumo editorial., 1999 (Clàssics de la ciència.). ISBN 84-7283-457-3. 
  21. Brillas, Enric. Conceptes de termodinàmica química i cinètica. Barcelona: Edicions Universitat Barcelona, 2004. ISBN 84-475-2842-1. , pàg. 107

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne