En matemàtiques, el teorema de Clairaut (també conegut com a teorema de Schwarz o de Young) mostra la igualtat de les derivades creuades d'una funció f sempre que:
tingui derivades parcials contínues per qualsevol punt del domini obert , per exemple, prenguem el punt , llavors, segons aquest teorema, per qualssevol tenim que:
Aquest teorema deu el seu nom al matemàtic i astrònom francès Alexis Clairaut.
Una conseqüència immediata d'això és que, si es compleixen les condicions del teorema de Clairaut, la matriu hessiana de la funció f serà simètrica.