Matice

Tento článek je o matematice. Další významy jsou uvedeny na stránce Matice (rozcestník).
Matice typu : obsahuje vodorovných řádků a svislých sloupců. Prvky matice se značí proměnnou se dvěma dolními indexy. Například představuje prvek na druhém řádku a v prvním sloupci matice.

Matice je v matematice obdélníkové či čtvercové schéma čísel nebo nějakých matematických objektů – prvků matice (též elementů matice).

Nejsou-li uvedeny další podrobnosti, reprezentují matice lineární zobrazení a umožňují provádět výpočty v lineární algebře. Proto je studium matic podstatnou částí lineární algebry. Většinu vlastností a operací abstraktní lineární algebry lze vyjádřit pomocí matic. Například maticový součin odpovídá skládání lineárních zobrazení.

Část matematiky, která využívá matice, je označována jako maticový počet.

Ne všechny matice souvisí s lineární algebrou, například matice incidence a matice sousednosti v teorii grafů. Tento článek se zaměřuje na matice související s lineární algebrou, a pokud není uvedeno jinak, všechny matice představují lineární zobrazení nebo je za takové lze považovat.

Čtvercové matice, matice se stejným počtem řádků a sloupců, hrají podstatnou roli v teorii matic. Čtvercové matice dané dimenze tvoří nekomutativní okruh, což je jeden z nejběžnějších příkladů nekomutativního okruhu. Determinant čtvercové matice je číslo spojené s maticí, které je zásadní pro studium čtvercových matic; například čtvercová matice je regulární, právě když má nenulový determinant. Vlastní čísla čtvercové matice jsou kořeny charakteristického polynomu, který je definován pomocí determinantu.

V geometrii jsou matice používány pro popis a reprezentaci geometrických transformací (například rotací) a změn souřadnic . V numerické analýze je mnoho výpočetních problémů redukováno na maticový výpočet, což často vyžaduje výpočet na počítači s maticemi velkých rozměrů. Matice se používají ve většině oblastí matematiky a ve většině vědeckých oborů, a to buď přímo, nebo prostřednictvím jejich použití v geometrii a numerické analýze.

Matice se často využívají pro vyjádření obecné rotace vektorů, transformace vektorů od jedné báze k bázi jiné, k řešení soustav lineárních rovnic, či k vyjádření operátorů v kvantové mechanice. Schopnost matic vyjadřovat vztahy mezi vektory se využívá v materiálovém inženýrství při studiu anizotropních materiálů.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne