Polookruh je v abstraktní algebře označení pro algebraickou strukturu podobnou okruhu, ve které ovšem nemusí pro všechny prvky existovat opačný prvek vzhledem ke sčítání. Jedná se o strukturu s dvěma binárními operacemi, která je vzhledem ke sčítání komutativním monoidem, vzhledem k násobení monoidem, pro operace platí distributivita a násobením nulovým prvkem vzniká nula.
Komutativním polookruhem se rozumí polookruh, kde platí komutativita pro násobení.
Definice polookruhu jako takového není zcela ustálená a za polookruh se někdy považuje i algebraická struktura, ve které není neutrální prvek vůči násobení ani vůči sčítání, tedy struktura se sčítáním a násobením, která je vzhledem ke sčítání komutativní pologrupou, vzhledem k násobení pologrupou a pro operace platí distributivita.