Math | maes o fewn mathemateg |
---|---|
Rhan o | geometreg |
Ffeiliau perthnasol ar Gomin Wicimedia |
Mae geometreg dafluniol yn bwnc o fewn mathemateg lle astudir nodweddion geometrig sefydlog, o ran trawsffurfio tafluniadau. Felly, yn wahanol i geometreg elfennol, ceir lleoliad a gofod gwahanol, a set o gysyniadau geometrig gwahanol. Yn gyffredinol, mae gan geometreg dafluniol fwy o bwyntiau nac a geir yn y gofod Ewclidaidd, o fewn un dimensiwn arbennig; caniateir hefyd i'r trawsffurfiadau geometrig hynny drawsffurfio'r pwyntiau ychwanegol (a elwir yn "bwyntiau anfeidredd") i bwyntiau Ewclidaidd, a'r ffordd arall.
Nid yw'n bosibl cyfeirio at onglau mewn geometreg dafluniol fel a wneir o fewn geometreg Ewclidaidd, oherwydd mae ongl yn enghraifft o gysyniad nad yw'n sefydlog, o ran trawsffurfiadau tafluniol, fel y gwelir mewn lluniadau o bersbectif. Un ffynhonnell ar gyfer geometreg tafluniol, yn wir, oedd theori persbectif. Gwahaniaeth arall rhwng geometreg dafluniol a geometreg elfennol yw'r ffordd y gellir dweud bod llinellau cyfochrog yn cwrdd mewn pwynt anfeidredd, unwaith y bydd y cysyniad yn cael ei drawsffurfio i dermau geometreg dafluniol. Unwaith eto, mae gan y cysyniad hwn gymhwysiadau ymarferol, megis traciau rheilffordd yn cyfarfod ar y gorwel mewn lluniad persbectif.[1][2][3]
Darganfyddwyd nodweddion elefnnol iawn o geometreg dafluniol yn y 3g gan Pappus o Alexandria.[4] Ond er fod cysyniadau elfennol wedi datblygu, dim ond yn y 19g y datblygodd i'w llawn dwf. Ymhlith y datblygiadau hynny roedd:
Erbyn heddiw, mae'r pwnc geometreg tafluniol wedi'i rannu'n sawl maes ymchwil. Dwy enghraifft ohonynt yw: