Logistisk funktion

fig. 1: Graf for logisitisk funktion er tegnet med rød. Her ses den S-formede graf tydeligt.
fig.2: Denne graf for logistisk funktion er symmetrisk omkring sit skæringspunkt med y-aksen.
fig. 3: Graf for eksponentielt voksende funktion og graf for logistisk funktion med sin øverste vandrette asymptote er tegnet i samme koordinatsystem. Logisitisk funktion stopper ved sit maksimum, som er markeret af den grønne, vandrette linje (asymptote til grafen for logisitisk funktion).
fig. 4: To eksempler på at starte løsningen af differentialligningen ved metoden separation af de variable.

Logistisk funktion er en matematisk model for, hvordan en population af eksempelvis bakterier udvikler sig.[1] Logistisk funktion anvendes også til at beskrive, hvordan et områdes indbyggere[2] øges til et en maksimal øvre grænse.[3] (Se den røde graf på fig. 1 - 4). Hver af de fire fig. viser noget karakteristisk for grafer for logistisk funktion.

Den logistiske funktion kan forstås som en eksponentielt voksende funktion[4] med et maksimum, .[5] betegnes også bæreevnen.[6] (Se fig. 3 og fig. 4). Den logistiske funktions graf er opstået ved at "klippe" den eksponentielle funktions graf[7] i stykker og så spejlvende den nederste del af den eksponentielt voksende funktions graf.

  1. ^ logistisk vækst | lex.dk – Den Store Danske
  2. ^ Touborg (1995) s. 67
  3. ^ http://www.henrikkragh.dk/logistisk-vaekst/AndreasHermansen2015.pdf
  4. ^ http://www.lr-web.dk/Lru/microsites/hvadermatematik/hem2download/kap6_Projekt_6_4_Diskret_logistisk_vaekst_prototype_for_kaosteori.pdf
  5. ^ HEM_2_2-9-18.pdf
  6. ^ https://www.matematikfysik.dk/mat/noter_tillaeg/tillaeg_differentialligninger_beviser_modeller.pdf
  7. ^ Beschreiben Sie exponentielles und logistisches Wachstum... | Ökologie | Repetico

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne