Automatisierte Schmerzerkennung

Die Automatisierte Schmerzerkennung (AS) ist eine Methode zur objektiven Messung von Schmerz und stellt zugleich ein interdisziplinäres Forschungsfeld dar, das Teile der Medizin, Psychologie, Psychobiologie und Informatik umfasst. Der Fokus liegt in der computergestützten objektiven Erkennung von Schmerzen, welche auf der Basis maschinellen Lernens realisiert wird.

Die automatisierte Schmerzerkennung ermöglicht eine valide und reliable Detektion bzw. Monitoring des Schmerzes bei Menschen ohne verbale Kommunikationsmöglichkeiten. Die dabei zugrunde liegenden maschinellen Lernverfahren werden im Vorfeld anhand menschlicher uni- oder multimodaler Körpersignale trainiert und validiert[1]. Signale zur Detektion des Schmerzes können mimischen, gestischen, (psycho-)physiologischen und paralinguistischen Charakter haben. Bisher steht die Erkennung der Schmerzintensität im Vordergrund, visionär wird aber auch die Erkennung der Qualität, der Lokalisation und des zeitlichen Verlaufs des Schmerzes angestrebt.

Die klinische Implementierung wird im Bereich der Schmerzforschung jedoch kontrovers diskutiert. Kritiker der automatisierten Schmerzerkennung vertreten den Standpunkt, dass eine Schmerzdiagnostik nur subjektiv durch den Menschen erfolgen kann.

  1. S. Gruss et al.: Pain Intensity Recognition Rates via Biopotential Feature Patterns with Support Vector Machines. In: PLoS One. Vol. 10, No. 10, 2015, S. 1–14, doi:10.1371/journal.pone.0140330.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne