Das Borel-Cantelli-Lemma, manchmal auch Borel’sches Null-Eins-Gesetz, (nach Émile Borel und Francesco Cantelli) ist ein Satz der Wahrscheinlichkeitstheorie. Es ist oftmals hilfreich bei der Untersuchung auf fast sichere Konvergenz von Zufallsvariablen und wird daher für den Beweis des starken Gesetzes der großen Zahlen verwendet. Eine weitere, veranschaulichende Anwendung des Lemmas ist das Infinite-Monkey-Theorem. Das Lemma besteht aus zwei Teilen, wobei der „klassische“ Satz von Borel-Cantelli nur den ersten Teil enthält. Der zweite ist eine Erweiterung und stammt von Paul Erdős und Alfréd Rényi.