Champernowne-Zahl

Die Champernowne-Zahl ist eine reelle Zahl aus dem Bereich der Zahlentheorie. Benannt ist sie nach dem Mathematiker David Gawen Champernowne, der 1933 damit erstmals die explizite Konstruktion einer normalen Zahl publizierte.[1] Die dezimale Ziffernfolge ist die Folge A033307 in OEIS. Kurt Mahler zeigte 1937, dass es sich dabei um eine transzendente Zahl handelt.[2]

Die ersten 161 Quotienten des Kettenbruches. Die 4., 18., 40. und 101. Stelle fehlen, da sie wertmäßig sehr groß sind.

Sie wird gebildet durch das „Aneinanderreihen“ der natürlichen Zahlen als Nachkommastellen. Vor dem Komma steht eine Null.

Im Dezimalsystem lauten die ersten Stellen der Champernowne-Zahl:

Sie kann auch als Reihe ausgedrückt werden:

  1. David G. Champernowne: The Construction of Decimals Normal in the Scale of Ten. In: Journal of the London Mathematical Society. Band 8, Nr. 4, 1933, S. 254–260, doi:10.1112/jlms/s1-8.4.254.
  2. Kurt Mahler: Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen. In: Koninklijke Akademie van Wetenschappen te Amsterdam. Proceedings of the Section of Sciences. Band 40, 1937, S. 421–428 (PDF; 392 kB).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne