Als charakteristische Funktion bezeichnet man in der Wahrscheinlichkeitstheorie eine spezielle komplexwertige Funktion, die einem endlichen Maß oder spezieller einem Wahrscheinlichkeitsmaß auf den reellen Zahlen beziehungsweise der Verteilung einer Zufallsvariable zugeordnet wird. Dabei wird das endliche Maß eindeutig durch seine charakteristische Funktion bestimmt und umgekehrt, die Zuordnung ist also bijektiv.
Wesentlicher Nutzen von charakteristischen Funktionen liegt darin, dass viele schwerer greifbare Eigenschaften des endlichen Maßes sich als Eigenschaft der charakteristischen Funktion wiederfinden und dort als Eigenschaft einer Funktion leichter zugänglich sind. So reduziert sich beispielsweise die Faltung von Wahrscheinlichkeitsmaßen auf die Multiplikation der entsprechenden charakteristischen Funktionen.