Darstellung (Gruppe)

Die hier beschriebene Darstellungstheorie ist ein Teilgebiet der Mathematik, das auf der Gruppentheorie aufbaut und ein Spezialfall der eigentlichen Darstellungstheorie ist, die sich mit Darstellungen von Algebren beschäftigt.

Die Grundidee ist, die Elemente einer Gruppe durch Transformationen bestimmter mathematischer Objekte darzustellen.

Eine Darstellung einer Gruppe , auch Gruppendarstellung, ist ein Homomorphismus von in die Automorphismengruppe einer gegebenen Struktur . Die Gruppenverknüpfung in entspricht dem Hintereinanderausführen von Automorphismen in :

Eine lineare Darstellung ist eine Darstellung durch Automorphismen eines Vektorraums . Eine lineare Darstellung ist somit ein Homomorphismus von in die allgemeine lineare Gruppe . Wenn ein -dimensionaler Vektorraum über einem Körper ist, dann besteht die Darstellung dementsprechend aus invertierbaren -Matrizen mit Koeffizienten aus . Die Vektorraumdimension heißt Grad der Darstellung.

Oft wird der Begriff „Darstellung“ im engeren Sinn von lineare Darstellung verwendet; eine Darstellung durch beliebige Automorphismen heißt dann Realisierung.

Lineare Darstellungen ermöglichen es, Eigenschaften einer Gruppe mit den Mitteln der linearen Algebra zu untersuchen. Das ist nützlich, weil die lineare Algebra, im Gegensatz zur Gruppentheorie, ein kleines, abgeschlossenes und bestens verstandenes Gebiet ist.

Darstellungen endlicher Gruppen ermöglichen es in der Molekülphysik und Kristallographie, die Auswirkungen vorhandener Symmetrien auf messbare Eigenschaften eines Materials mit Hilfe eines rezeptmäßigen Kalküls zu bestimmen.

→ Formal und auch nach der Bezeichnung gehören die Permutationsdarstellungen zu den hier definierten Darstellungen einer Gruppe: Hier ist die Struktur eine endliche Menge, deren Automorphismengruppe also die Menge ihrer bijektiven Selbstabbildungen. Damit ist der Homomorphismus eine Gruppenoperation, auch die linearen Darstellungen sind spezielle Gruppenoperationen. Siehe zu Permutationsdarstellungen, die trotz des formalen Zusammenhangs keine Untersuchungsgegenstände der Darstellungstheorie sind, den Artikel Permutationsgruppe.

Allgemeiner gibt es weit ausgearbeitete Theorien für die Darstellungstheorie endlicher Gruppen und die Darstellungstheorie kompakter Gruppen.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne