In der Mathematik und Logik bezeichnet man eine Variable als in einer mathematischen Formel frei vorkommend, wenn sie in dieser Formel an mindestens einer Stelle nicht im Bereich eines Operators auftritt. Sind hingegen alle Vorkommen der Variable innerhalb der Formel an Operatoren gebunden, bezeichnet man die Variable als in dieser Formel gebunden. Eine Formel ohne freie Variablen wird geschlossene Formel, eine Formel mit mindestens einer freien Variablen wird offene Formel genannt.
Zum Beispiel ist in der Prädikatenlogik eine Individuenvariable in einer prädikatenlogischen Formel frei, wenn sie in dieser Formel an wenigstens einer Stelle unquantifiziert (also nicht im Bereich eines Quantors zu dieser Variable) vorkommt. Eine mit einem Quantor ( oder ) und nur innerhalb seines Bindungsbereichs verwendete Variable heißt gebunden. In der Prädikatenlogik wird eine geschlossene Formel, das heißt eine Formel ohne freie Variablen, auch Aussage oder Satz genannt; eine offene Formel, das heißt eine Formel mit freien Variablen, wird auch Aussageform genannt.
Ein und dieselbe Variable kann in einer Formel sowohl freie als auch gebundene Vorkommen haben. Die Kenntnis von freien und gebundenen Variablen wird zum Beispiel für die Bereinigung von Formeln benötigt.
Gebundene Variablen kommen stets bei der Notation von Klassen und Mengen vor, die in der Mathematik überall gebraucht werden. Ebenso kommen sie vor beim Lambda-Kalkül und bei Ausdrücken mit einer gebundenen Integrationsvariable oder Summationsvariablen sowie bei Kennzeichnungen.