Funktionalanalysis

Die Funktionalanalysis ist der Zweig der Mathematik, der sich mit der Untersuchung von unendlichdimensionalen topologischen Vektorräumen und Abbildungen auf solchen befasst. Hierbei werden Analysis, Topologie und Algebra verknüpft. Ziel dieser Untersuchungen ist es, abstrakte Aussagen zu finden, die sich auf verschiedenartige konkrete Probleme anwenden lassen. Die Funktionalanalysis ist der geeignete Rahmen zur mathematischen Formulierung der Quantenmechanik[1] und zur Untersuchung partieller Differentialgleichungen.[2]

  1. Francois David: The Formalisms of Quantum Mechanics (= Lecture Notes in Physics. Band 893). Springer International Publishing, Cham 2015, ISBN 978-3-319-10538-3, doi:10.1007/978-3-319-10539-0.
  2. Haim Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer New York, New York, NY 2011, ISBN 978-0-387-70913-0, doi:10.1007/978-0-387-70914-7.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne