Die von Hans-Joachim Arnold begründete Geometrische Relationenalgebra ist eine Spezialisierung der Geometrischen Algebra[1][2][3] und somit Teilgebiet einerseits der Inzidenz- bzw. Synthetischen Geometrie und andererseits der Universellen Algebra. Ausgehend von der Zielsetzung der Geometrischen Algebra, mit Objekten der geometrischen Anschauung wie Ebenen, Winkel und Kreisen sowie mit geometrischen Operationen wie Schnitten von verschiedenen Objekten oder Transformationen sehr einfach zu rechnen und sich dabei im Wesentlichen der geometrischen Interpretation von algebraischen Systemen wie Vektoralgebren, Quaternionen etc. zu bedienen, werden in der Geometrischen Relationenalgebra (fast) ausschließlich Relationensysteme zur algebraischen Beschreibung von geometrischen Artefakten verwendet. Dieser seit Mitte der 1970er Jahre entwickelte Kalkül beantwortet erstmals vollständig die Frage nach einer synonymen, also isomorphen – und nicht wie bisher mit Hilfe von Ternärkörpern und anderen Modellen nur isotopen – algebraischen Beschreibung aller affinen und projektiven Geometrien und ermöglicht durch das Prinzip „operator operandum“ einen intuitiv einfachen Zugang zu einer Fernraumgeometrie. Bedeutendster Aspekt ist, dass sich für aufwändig zu beschreibende geometrische Schnittpunktsätze (z. B. affiner und projektiver Satz von Desargues, Invarianzsatz von Hessenberg) in der Geometrischen Relationenalgebra notwendige und hinreichende Bedingungen mit einfachen „Rechenregeln“, also das Hintereinanderausführen von Relationen in den „Homogenitätsregeln“, angeben und beweisen lassen („Prinzip der konstruktiven Erweiterbarkeit“). Die Methodik findet darüber hinaus Anwendungen in den Kognitionswissenschaften und insbesondere in der Systemtheorie: Hier werden mit dem relationalen Kalkül so unterschiedliche Systeme wie zeitdiskrete, zeitkontinuierliche (lineare und nichtlineare) dynamische Systeme und Fuzzy-Systeme inklusive wichtiger Systemeigenschaften mit derselben mathematischen Sprache (synonym) beschrieben. Zentrale Begriffe der Geometrischen Relationenalgebra sind geometrische Relative, Regel-Relative und Handlungsrelative – und die daraus abgeleiteten Derivate.