Holomorph einer Gruppe

In der Mathematik, speziell in der Gruppentheorie, ist der Holomorph einer Gruppe G eine bestimmte mit bezeichnete Gruppe, die sowohl die Gruppe G als auch ihre Automorphismengruppe enthält, oder zumindest Kopien dieser beiden Gruppen.[1] Der Holomorph gestattet es, die Umkehrungen gewisser Sätze über vollständige Gruppen und charakteristisch einfache Gruppen zu zeigen. Es gibt zwei Versionen, einmal als semidirektes Produkt und einmal als Permutationsgruppe. In der deutschsprachigen Literatur war früher auch die Bezeichnung „Holomorphie einer Gruppe“ üblich.[2]

Der englische Begriff holomorph zur Bezeichnung der hier vorgestellten Konstruktion wurde 1897 von William Burnside eingeführt. Allerdings erscheint er auch schon früher bei anderen Autoren.[3]

  1. Wilhelm Specht: Gruppentheorie. Springer-Verlag (1956), Kapitel 1.3.5: Der Holomorph einer Gruppe.
  2. Andreas Speiser: Die Theorie der Gruppen endlicher Ordnung (= Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften – Mathematische Reihe. Nr. 22). 4. Auflage. Birkhäuser Verlag, Basel/Stuttgart 1956, 9. Kapitel, § 40 Automorphismen einer Gruppe, S. 121.
  3. G. A. Miller, H. F. Blichfeldt, L. E. Dickson: Theory and Applications of Finite Groups. New York (1916), Nachdruck Applewood Books (2012).
    W. Burnside: Theory of groups of finite order. 1. Ausgabe, Cambridge (1897), Seite 228, online.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne