Hydrostatischer Druck

Der hydrostatische Druck (altgriechisch ὕδωρ hýdor, deutsch ‚Wasser‘) ist der Druck innerhalb eines ruhenden Fluids, wobei es sich um eine Flüssigkeit, ein Gas oder ein Plasma handeln kann. Der hydrostatische Druck kann beispielsweise von den das Fluid umschließenden Wänden erzeugt werden (siehe Zylinder mit Kolben), oder Resultat der Schwerebeschleunigung (Gravitationsdruck oder Schweredruck) oder Trägheit sein (z B. in einer Zentrifuge[1]). Der hydrostatische Druck kann auch von außen vom Außendruck oder Betriebsdruck[2] aufgebracht werden, unter dem das Fluid ruht.

Nach dem Pascalschen Prinzip (von Blaise Pascal) breitet sich der hydrostatische Druck im Fluid allseitig aus und wirkt nach Euler[3] im Volumen in alle Richtungen aber immer senkrecht auf Wände. So ist der hydrostatische Druck in einem Fluid ohne äußeres Kraftfeld überall gleich und wirkt auf alle Flächen, die das Fluid begrenzen, mit einer senkrecht auf das jeweilige Flächenstück gerichteten flächenverteilten Kraft. Der hydrostatische Druck ist ein spezieller Spannungszustand, in welchem keine Schubspannungen vorkommen. Diese können in ruhenden Fluiden nicht auftreten[4]. Im Kontext von Festkörpern werden derartige Spannungszustände daher ebenfalls als hydrostatisch bezeichnet.

In strömenden Fluiden hängt der Druck innerhalb des Strömungsfeldes oder auf dessen begrenzenden Wänden im Allgemeinen auch von der Strömungsgeschwindigkeit ab. Beispielsweise ist der Druck erhöht an einem Staupunkt oder erniedrigt in einer Venturi-Düse, siehe auch Bernoulli-Effekt.

  1. E. Becker, E. Piltz: Übungen zur Technischen Strömungslehre. 2013, ISBN 978-3-322-91794-2, S. 19 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 9. März 2022]).
  2. Betriebsdruck – Lexikon der Physik. Spektrum Verlag, abgerufen am 18. Januar 2022.
  3. István Szabó: Geschichte der mechanischen Prinzipien. Springer, 2013, ISBN 978-3-0348-5301-9 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 1. Mai 2021]).
  4. Dietmar Gross, Werner Hauger, Peter Wriggers: Technische Mechanik; 4. Hydromechanik, Elemente der Höheren Mechanik, Numerische Methoden / Dietmar Gross, Werner Hauger, Peter Wriggers. 10., verbesserte und ergänzte Auflage. Springer Vieweg, Berlin [Heidelberg] 2018, ISBN 978-3-662-55693-1, S. 3 f.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne