Implikation

Die Bezeichnung Implikation (von lateinisch implicare ‚verwickeln‘; Verb: implizieren; Adjektiv: implizit) wird in der Logik nicht einheitlich für einen bestimmten logischen Zusammenhang verwendet; insbesondere werden unterschieden:

  • eine materiale Implikation als eine von mehreren möglichen logischen Verknüpfungen (Junktoren) zwischen zwei Aussagenvariablen: (siehe auch Artikel „Junktor“). Diese materiale Implikation, auch Subjunktion oder Konditional genannt, kann wahrheitsfunktional definiert werden (siehe Abschnitt unten). Sie findet sich bereits bei Philon von Megara (3. Jh. v. Chr.) und wird umgangssprachlich meist umschrieben mit: „Wenn a, dann b.“[1]
  • eine formale Implikation als eine Form logischen Zusammenhangs, welche eher einer intuitiven Anschauung entsprechen soll, die sich aus Gewohnheiten der Umgangssprache ergeben kann. Es entstanden im Laufe der Zeit verschiedene Interpretationen, um das Phänomen möglichst eindeutig zu formalisieren. Dabei wird die obige Formel differenzierter betrachtet, zum Beispiel als , gelesen: „Für jedes Individuum x gilt: Wenn x die Eigenschaft A besitzt, dann besitzt es auch die Eigenschaft B.“ Die Analyse einer Aussage mit Zerlegung in den Prädikator und sein Argument, insbesondere für die formale Implikation, findet sich ähnlich schon bei Platon und Aristoteles.[1]

Als Varianten einer deduktionmäßigen formalen Implikation können auch die intuitionistische Implikation bzw. Subjunktion innerhalb der dialogischen Logik sowie die strenge Implikation von Ackermann und ebenso die strikte Implikation angesehen werden. Von Bruno von Freytag-Löringhoff und Albert Menne wurde die Implikation als hypothetisches Urteil formalisiert.

Diese spezifischeren Deutungen können auch als objektsprachliche Implikationen bezeichnet werden. Davon zu unterscheiden sind dann jeweils die metasprachlichen Implikationen; sie erlauben es, über die logische Struktur dieser Sprachen zu sprechen. Dementsprechend kann ihnen eine noch engere Verbindung zum Ableitbarkeitsbegriff und dem Begriff der Schlussfolgerung zugesprochen werden.

  1. a b Grundriß der formalen Logik. Paderborn: Universitäts-Taschen-Bücher-Verlag: 1983. Aus dem Französischen von Joseph Maria Bocheński. Von Albert Menne übersetzt und erweitert.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne