In der Algebra, einem Teilgebiet der Mathematik, ist ein irreduzibles Polynom ein Polynom, das sich nicht als Produkt zweier nicht invertierbarer Polynome schreiben lässt und somit nicht in „einfachere“ Polynome zerfällt. Ihre Bedeutung für die Polynomringe ist in den meisten Fällen (Polynome über faktoriellen Ringen) mit der Bedeutung von Primzahlen für natürliche Zahlen gleich.
Ob ein Polynom irreduzibel ist, hängt von der zugrundeliegenden algebraischen Struktur ab, die man betrachtet. Beispielsweise ist das Polynom im Polynomring über den reellen Zahlen irreduzibel, da keine reellen Lösungen hat. Im Polynomring über den komplexen Zahlen ist das Polynom jedoch reduzibel, da es in zerlegt werden kann.