Korrespondenzprinzip

Die quantenmechanische Aufenthaltswahrscheinlichkeitsdichte eines Teilchens ist proportional zum Quadrat der Wellenfunktion der Materiewelle an jener Stelle. Für große Quantenzahlen geht die quantenmechanische Wahrscheinlichkeitsdichte asymptotisch in die klassische über.

Mit Korrespondenzprinzip wurde ursprünglich eine Beziehung zwischen Termini der klassischen Physik und der Quantenmechanik bezeichnet. Der Ausdruck wurde 1920 von Niels Bohr im Kontext der älteren Quantentheorie geprägt.[1] Es wird in diesem Zusammenhang auch als Bohrsches Korrespondenzprinzip bezeichnet.

Bohr ging in seinem Atommodell von 1913 noch von einem klassischen Modell aus, war aber gezwungen, sehr einschränkende Bedingungen für die vorkommenden Elektronenbahnen zu formulieren, um die beobachteten diskreten optischen Spektren zu erklären. Trotzdem konnte die so formulierte „ältere Quantentheorie“ keine vollständige Theorie der Spektren liefern. Für große Quantenzahlen ergaben sich jedoch asymptotische Formeln, die denen der klassischen Physik entsprachen und diese Erklärungslücken teilweise füllen konnten. Das Korrespondenzprinzip diente in diesem Sinn in der älteren Quantentheorie als heuristisches Prinzip, um den Übergang zur klassischen Physik (in diesem Fall Elektrodynamik) für große Quantenzahlen zu beschreiben.

Auch in der ab 1925 entstandenen Quantenmechanik diente das Korrespondenzprinzip zur Beschreibung einer heuristischen Methode, quantenmechanische Operatoren und ihre Vertauschungsrelationen mit denen der klassischen Mechanik in Verbindung zu bringen.

In der Wissenschaftstheorie wird (angeregt durch das Beispiel der Quantentheorie) unter Korrespondenzprinzip die Beziehung verschiedener Theorien, in der Regel einer älteren und einer neueren, zum selben Phänomenbereich verstanden.[2] Es geht damit um das grundlegende Konzept einer Theorienhierarchie und -entwicklung in den Naturwissenschaften. Auch in weiteren Wissenschaften wie der Kristallographie wird in diesem Sinn von Korrespondenzprinzipien gesprochen. Es besteht ein großer Zusammenhang zur Ergodenhypothese, die Aussagen über das zeitliche Verhalten eines Systems und dessen Grundgesamtheit (Erwartungswert) macht und damit etwas über das asymptotische Grenzverhalten der Mittelung über eine unendlich lange Beobachtungszeit aussagt.

  1. Niels Bohr: Über die Serienspektra der Elemente. In: Zeitschrift für Physik. Bd. 2, Nr. 5, 1920, S. 423–469, doi:10.1007/BF01329978.
  2. Karl Popper: Die Zielsetzung der Erfahrungswissenschaft. In: Hans Albert (Hrsg.): Theorie und Realität. Ausgewählte Aufsätze zur Wissenschaftslehre der Sozialwissenschaften (= Die Einheit der Gesellschaftswissenschaften. 2, ISSN 0424-6985). J. C. B. Mohr (Paul Siebeck), Tübingen 1964, S. 75–86, hier S. 84.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne