Ljapunow-Exponent

Der Ljapunow-Exponent eines dynamischen Systems (nach Alexander Michailowitsch Ljapunow) beschreibt die Geschwindigkeit, mit der sich zwei (nahe beieinanderliegende) Punkte im Phasenraum voneinander entfernen oder annähern (je nach Vorzeichen). Pro Dimension des Phasenraums gibt es einen Ljapunow-Exponenten, die zusammen das sogenannte Ljapunow-Spektrum bilden. Häufig betrachtet man allerdings nur den größten Ljapunow-Exponenten, da dieser in der Regel das gesamte Systemverhalten bestimmt.

Betrachtet man allgemeine Trajektorieverläufe im Phasenraum, dann liefern die Exponenten ein Maß für die Rate an Separation von einer Ursprungstrajektorie . In Bezug auf eine zeitkontinuierliche Betrachtung eines dynamischen Systems lässt sich dieser Zusammenhang formal allgemein darstellen als: , wobei die Linearisierung der Trajektorie zum Zeitpunkt darstellt und der Ljapunow-Exponent ist.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne