MCMC-Verfahren

Markow-Chain-Monte-Carlo-Verfahren (kurz MCMC-Verfahren; seltener auch Markow-Ketten-Monte-Carlo-Verfahren) sind eine Klasse von Algorithmen, die zufällige Stichproben aus Wahrscheinlichkeitsverteilungen ziehen. Dies geschieht auf der Basis der Konstruktion einer Markow-Kette, welche die erwünschte Verteilung als ihre stationäre Verteilung aufweist. Der Zustand der Kette nach einer großen Zahl von Schritten wird dann als Stichprobe der erwünschten Verteilung benutzt. Die Qualität der Stichprobe steigt mit zunehmender Zahl der Schritte.

Konvergenz des Metropolis-Hastings-Algorithmus; die blaue Verteilung soll durch die orange approximiert werden.

Üblicherweise gelingt es leicht, eine Markow-Kette mit den erwünschten Eigenschaften zu konstruieren. Das Schwierigere ist, zu ermitteln, wie viele Schritte nötig sind, um Konvergenz zur stationären Verteilung mit akzeptablem Fehler zu erreichen, also den Algorithmus so zu gestalten, dass möglichst effektiv unabhängige Systemzustände generiert werden. Eine gute Kette mit einer gut gewählten Anfangsverteilung wird schnell konvergieren, d. h., die stationäre Verteilung wird schnell erreicht. Bei typischer Anwendung von MCMC-Verfahren kann die Zielverteilung nur näherungsweise erreicht werden, da es immer einen gewissen Resteffekt der Anfangsverteilung gibt. Stichproben, welche mit MCMC-Algorithmen generiert werden, weisen typischerweise hohe Autokorrelationen auf. Daher wird der Fehler des Mittelwerteschätzers bei Verwendung des Standardfehlers unterschätzt.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne