Nabla-Operator

Der Nabla-Operator ist ein Symbol, das in der Vektor- und Tensoranalysis benutzt wird, um kontextabhängig einen der drei Differentialoperatoren Gradient, Divergenz oder Rotation zu notieren. Das Formelzeichen des Operators ist das Nabla-Symbol (auch oder , um die formale Ähnlichkeit zu üblichen vektoriellen Größen zu betonen).

Der Name „Nabla“ leitet sich ab von einem harfen­ähnlichen phönizischen[1] Saiteninstrument, das in etwa die Form dieses Zeichens hatte. Die Schreibweise wurde von William Rowan Hamilton (1805–1865) eingeführt und vom Mathematiker Peter Guthrie Tait (1831–1901) weiterentwickelt.[2] Im Englischen wird der Operator als „del“ bezeichnet.[3]

  1. K. E. Georges: Ausführliches lateinisch-deutsches Handwörterbuch. Hrsg.: Karl-Maria Guth. 1. Auflage. Band 4 (M–Q). Hofenberg, Berlin 2014, ISBN 978-3-8430-4923-8 (Vollständige Neuausgabe der 8. Auflage von 1913).
  2. Wolfgang Werner: Vektoren und Tensoren als universelle Sprache in Physik und Technik. Tensoralgebra und Tensoranalysis. Band 1. Springer Vieweg, Wiesbaden 2019, ISBN 978-3-658-25271-7, S. 352, doi:10.1007/978-3-658-25272-4.
  3. Eric Weisstein: Del. In: MathWorld (englisch).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne