Neyman-Pearson-Lemma

Das Neyman-Pearson-Lemma, auch Fundamentallemma von Neyman-Pearson oder Fundamentallemma der mathematischen Statistik genannt, ist ein zentraler Satz der Testtheorie und somit auch der mathematischen Statistik, der eine Optimalitätsaussage über die Konstruktion eines Hypothesentests macht. Gegenstand des Neyman-Pearson-Lemmas ist das denkbar einfachste Szenario eines Hypothesentests, das auch Neyman-Pearson-Test genannt wird: Dabei ist sowohl die Nullhypothese als auch die Alternativhypothese einfach, d. h., sie entsprechen jeweils einer einzelnen Wahrscheinlichkeitsverteilung, deren zugehörige Wahrscheinlichkeitsdichten nachfolgend mit und bezeichnet werden. Dann, so die Aussage des Neyman-Pearson-Lemmas, erhält man den besten Test durch eine Entscheidung, bei der die Nullhypothese verworfen wird, wenn der Likelihood-Quotient einen bestimmten Wert unterschreitet.

Das Lemma ist nach Jerzy Neyman und Egon Pearson benannt, die es 1933 bewiesen haben.[1]

  1. Neyman-Pearson lemma. In: Michiel Hazewinkel (Hrsg.): Encyclopedia of Mathematics. Springer-Verlag und EMS Press, Berlin 2002, ISBN 1-55608-010-7 (englisch, encyclopediaofmath.org).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne