Nichteuklidische Geometrie

In der hyperbolischen, der euklidischen und der elliptischen Geometrie stehen zwei Geraden, die mit einer Normalen verbunden sind, unterschiedlich zueinander.

Die nichteuklidischen Geometrien sind Spezialisierungen der absoluten Geometrie. Sie unterscheiden sich von der euklidischen Geometrie, die ebenfalls als eine Spezialisierung der absoluten Geometrie formuliert werden kann, dadurch, dass in ihnen das Parallelenaxiom nicht gilt.

Auf einer Kugel ist die Winkelsumme eines Dreiecks im Allgemeinen nicht 180°. Die Oberfläche einer Kugel ist nicht euklidisch, aber lokal sind die Gesetze der euklidischen Geometrie eine gute Näherung. Zum Beispiel ist in einem kleinen Dreieck auf der Oberfläche der Erde die Winkelsumme eines Dreiecks ziemlich genau 180°.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne