OPTICS

OPTICS (englisch Ordering Points To Identify the Clustering Structure ‚[etwa] Punkte ordnen um die Clusterstruktur zu identifizieren‘) ist ein dichtebasierter Algorithmus zur Clusteranalyse. Er wurde von Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel und Jörg Sander entwickelt.[1] Das Grundprinzip des Algorithmus entstammt DBSCAN,[2] jedoch löst der Algorithmus eine wichtige Schwäche des DBSCAN-Algorithmus: im Gegensatz zu diesem kann er Cluster unterschiedlicher Dichte erkennen. Gleichzeitig eliminiert er (weitgehend) den -Parameter des DBSCAN-Algorithmus. Hierzu ordnet OPTICS die Punkte des Datensatzes linear so, dass räumlich benachbarte Punkte in dieser Ordnung nahe aufeinander folgen. Gleichzeitig wird die sogenannte „Erreichbarkeitsdistanz“ notiert. Zeichnet man diese Erreichbarkeitsdistanzen in ein Diagramm, so bilden Cluster „Täler“ und können so identifiziert werden.

  1. Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, Jörg Sander: OPTICS: Ordering Points To Identify the Clustering Structure. In: ACM SIGMOD international conference on Management of data. ACM Press, 1999, S. 49–60 (CiteSeerX).
  2. Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Evangelos Simoudis, Jiawei Han, Usama M. Fayyad (Hrsg.): Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press, 1996, ISBN 1-57735-004-9, S. 226–231 (CiteSeerX).

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne