Die Partialbruchzerlegung oder Partialbruchentwicklung ist eine standardisierte Darstellung rationaler Funktionen. Sie wird in der Mathematik verwendet, um das Rechnen mit solchen Funktionen zu erleichtern. Insbesondere kommt sie bei der Integration der rationalen Funktionen zur Anwendung.
Hier liegt die Tatsache zugrunde, dass jede rationale Funktion als Summe einer Polynomfunktion und Brüchen der Form
dargestellt werden kann. Die sind dabei die Polstellen der Funktion.
Sind die Polstellen bereits bekannt, so ist die Bestimmung der Zähler die eigentliche Aufgabe der Partialbruchzerlegung.
Bei reellwertigen Funktionen müssen die Polstellen und infolgedessen auch die Zahlen nicht unbedingt reell sein, denn die reellen Zahlen sind nicht algebraisch abgeschlossen. Man kann das Rechnen mit komplexen Zahlen aber vermeiden, weil mit jeder komplexen Nullstelle auch die konjugiert komplexe Zahl Nullstelle ist.
Statt und verwendet man dann einen Term , wobei ein reelles quadratisches Polynom ist und auch und reell sind.