Polarkoordinaten

Ein Polargitter verschiedener Winkel mit Grad-Angaben

In der Mathematik und Geodäsie versteht man unter einem Polarkoordinatensystem (auch: Kreiskoordinatensystem) ein zweidimensionales Koordinatensystem, in dem jeder Punkt in einer Ebene durch den Abstand von einem vorgegebenen festen Punkt und durch den Winkel zu einer festen Richtung festgelegt wird.

Der feste Punkt wird als Pol bezeichnet; er entspricht dem Ursprung bei einem kartesischen Koordinatensystem. Der vom Pol in der festgelegten Richtung ausgehende Strahl heißt Polarachse. Der Abstand vom Pol wird meist mit oder bezeichnet und heißt Radius oder Radialkoordinate, der Winkel wird mit oder bezeichnet und heißt Winkelkoordinate, Polarwinkel, Azimut oder Argument.

Polarkoordinaten bilden einen Spezialfall von orthogonalen Koordinaten. Sie sind hilfreich, wenn sich das Verhältnis zwischen zwei Punkten leichter durch Winkel und Abstände beschreiben lässt, als dies mit - und -Koordinaten der Fall wäre. In der Geodäsie sind Polarkoordinaten die häufigste Methode zur Einmessung von Punkten (Polarmethode). In der Funknavigation wird das Prinzip oft als „Rho-Theta“ (für Distanz- und Richtungsmessung) bezeichnet.

In der Mathematik wird die Winkelkoordinate im mathematisch positiven Drehsinn (Gegenuhrzeigersinn) gemessen. Wird gleichzeitig ein kartesisches Koordinatensystem benutzt, so dient in der Regel dessen Koordinatenursprung als Pol und die -Achse als Polarachse. Die Winkelkoordinate wird also von der -Achse aus in Richtung der -Achse gemessen. In der Geodäsie und in der Navigation wird das Azimut von der Nordrichtung aus im Uhrzeigersinn gemessen.

Polarkoordinatenpapier ist mit einem Polarkoordinatensystem bedruckt.


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne