Quintenzirkel

Quintenzirkel der Dur- und Molltonarten

Als Quintenzirkel bezeichnet man in der Musiktheorie eine Reihe von zwölf im Abstand temperierter Quinten angeordneten Tönen, deren letzter Ton die gleiche Tonigkeit wie der erste hat und demzufolge mit ihm gleichgesetzt werden kann. Diese Gleichsetzung ist jedoch nur möglich aufgrund einer enharmonischen Verwechslung. Diese kann an jeder beliebigen Stelle erfolgen. Durch die Rückkehr zum Anfang ergibt sich ein „Rundgang“, der grafisch als Kreis (lat.: circulus „Kreis“) dargestellt wird.

Der Quintenzirkel leistet dreierlei:

  • In seiner heute gebräuchlichsten Darstellung ordnet er die parallelen Dur- und Molltonarten so an, dass Art, Anzahl und Reihenfolge ihrer Vorzeichen abzulesen sind.
  • Er illustriert für die Tonarten (sowie deren Grundtöne und auf diesen errichtete Akkorde) das Prinzip der Quintverwandtschaft. Davon ausgehend lässt sich beschreiben, dass zwei Tonarten umso stärker verwandt sind, je näher sie im Quintenzirkel beieinanderliegen.
  • Die wichtigsten diatonischen Tonleitern der westlichen Musik (Dur, natürliches Moll und die modalen Skalen) können aus dem Quintenzirkel hergeleitet werden.

Die erste bekannte Darstellung des Quintenzirkels findet sich in einem 1679 gedruckten „Circle of fifths in Idea grammatikii musikiyskoy (Moscow, 1679)“ von Nikolay Diletsky. In einem gedruckten Generalbasstraktat von Johann David Heinichen von 1711 wird der Quintenzirkel ebenfalls schon erwähnt.[1]

  1. Neu erfundene und Gründliche Anweisung … zu vollkommener Erlernung des General-Basses, S. 261. Siehe dazu Lester 1989, S. 108–111.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne