Reaktionsdiffusionsgleichungen (RD-Gleichungen) beschreiben Vorgänge, bei denen eine lokale Wechselwirkung und zusätzlich eine Diffusion auftritt. Ein Beispiel aus der Chemie sind etwa Modelle für die Belousov-Zhabotinsky-Reaktion (BZ-Reaktion), bei der räumliche Muster entstehen, weil eine lokal oszillierende chemische Reaktion mit einem Diffusionsvorgang gekoppelt ist. Ein Beispiel aus der Biologie sind räumliche Ausbreitungsprozesse von Tieren und Pflanzen. Hierbei hat der Interaktionsterm oft die Form einer logistischen Kolmogorov-Gleichung.
Bei RD-Gleichungen handelt es sich um partielle Differentialgleichungen zweiten Grades, die der Form nach Ratengleichungen sind (Herleitung siehe dort). Sie beschreiben also die zeitliche Änderung einer Größe X (z. B. Stoffmenge, Abundanz, Konzentration o. Ä.):
Liegt außerdem ein gerichteter Transportprozess vor (Konvektion), so muss die obige Reaktions-Diffusionsgleichung um einen Konvektionsterm erweitert werden, analog zur Konvektions-Diffusions-Gleichung.
Reaktionsdiffusionsgleichungen finden in der Technischen Chemie und im Maschinenbau Anwendung. Dort werden verschiedene Systeme betrachtet, bei denen Reaktion, Diffusion und Konvektion zusammen auftreten (Makrokinetik). Beispiele sind die Auslegung von chemischen Reaktoren oder technische Verbrennungsvorgänge. In der Entwicklungsbiologie spielen Reaktionsdiffusionsgleichungen seit Alan Turing eine überragende Rolle bei der mathematischen Theorie der Morphogenese, siehe Turing-Mechanismus. Systeme mit einer aktivierenden und zwei inhibierenden Komponenten spielen eine wichtige Rolle bei der Modellierung der Strukturbildungsprozesse lokalisierter teilchenartiger Strukturen, sogenannter dissipativer Solitonen, die z. B. bei oszillierenden chemischen Reaktionen vom Typ der Belousov-Zhabotinsky-Reaktion und Halbleiter-Gasentladungssystemen beobachtet werden. Auch Chemische Wellen und Ausbreitung von Nervenpulsen werden mit Reaktions-Diffusions-Gleichungen beschrieben.