In der Mathematik ist die spezielle unitäre Gruppe der Ordnung 2, d. h. die lineare Gruppe der unitären -Matrizen mit Determinante 1. Sie ist (zusammen mit der Drehgruppe , deren zweifache Überlagerung sie ist) eine einfache nichtabelsche kompakte Lie-Gruppe.
Die Gruppe spielt eine wichtige Rolle in der Physik, unter anderem im Standardmodell der Elementarteilchenphysik und in der Quantenmechanik, wo sie auch als komplexe Dreh-Gruppe (Gruppe der „komplexen Drehungen“ des zweidimensionalen komplexen Raumes ) oder Spin-Gruppe bezeichnet wird. Bündel mit Strukturgruppe werden in der Theorie der 4-Mannigfaltigkeiten zur Definition der Donaldson-Invarianten[1] und in der Theorie der 3-Mannigfaltigkeiten zur Definition der Casson-Invariante und der Instanton-Floer-Homologie[2][3] verwendet.