Spin

Spin Typ Teilchen (Beispiele)
Boson Higgs-Boson
Fermion Elektron, Neutrino, Quarks
Boson Photon, Gluon, W-Boson und Z-Boson
Fermion supersymmetrische Teilchen (hypothetisch)
Boson Graviton (hypothetisch)

Spin (von englisch spin ‚Drehung‘, ‚Drall‘) ist in der Teilchenphysik der Eigendrehimpuls von Teilchen. Bei den fundamentalen Teilchen ist er, wie die Masse, eine unveränderliche innere Teilcheneigenschaft. Er beträgt ein halb- oder ganzzahliges Vielfaches (Spinquantenzahl) der reduzierten Planck-Konstante . Abgesehen davon, dass er nicht durch die (Dreh-)Bewegung einer Masse hervorgerufen wird, hat er alle Eigenschaften eines klassisch-mechanischen Eigendrehimpulses, insbesondere bezüglich Drehimpulserhaltung und Koordinatentransformationen, und ist damit auch ein Axialvektor. Der Spin kann nur quantenmechanisch verstanden werden. Das Spin-Statistik-Theorem verbindet den Spin eines Teilchens mit der Art der statistischen Beschreibung mehrerer gleicher Teilchen: Teilchen mit einer halbzahligen Spinquantenzahl befolgen die Fermi-Dirac-Statistik und heißen Fermionen, Teilchen mit einer ganzzahligen Spinquantenzahl befolgen die Bose-Einstein-Statistik und heißen Bosonen.

Bisher sind fundamentale Teilchen mit Spins bekannt (s. nebenstehende Tabelle). Fundamentale Teilchen mit den Spins wurden postuliert, aber bislang nicht nachgewiesen.[Anm. 1]

Bei zusammengesetzten Systemen, z. B. bei Proton, Neutron, Atomkern, Atom, Molekül, Exziton, Hadronen wie Ω-Teilchen ergibt sich der Spin durch Addition der Spins und Bahndrehimpulse der Komponenten nach den Regeln der quantenmechanischen Drehimpulsaddition.

Erstmals wurde 1925 dem Elektron ein Spin zugeschrieben, um eine Reihe unverstandener Details der optischen Spektren von Atomen mit einem einzigen Konzept konsistent erklären zu können[1] (zur Entdeckung und Rezeption des Spin siehe Elektronenspin). Dem Proton wird der Spin seit 1928 zugeschrieben, weil eine Anomalie in der spezifischen Wärme von Wasserstoffgas nicht anders zu erklären ist.[2]

Der halbzahlige Spin kann weder anschaulich noch halbklassisch durch eine Drehbewegung erklärt werden. Eine formale Begründung wurde 1928 in der relativistischen Quantenmechanik (s. Dirac-Gleichung) entdeckt. Der halbzahlige Spin der Elektronen und Quarks führt über das Spin-Statistik-Theorem weiter zum Pauli-Prinzip, das grundlegend für den Aufbau der Atomkerne und der Atomhüllen ist. Das Pauli-Prinzip bestimmt damit auch das chemische Verhalten der Atome, wie es sich im Periodensystem der Elemente ausdrückt. Demnach spielt der halbzahlige Spin beim Aufbau der Materie bis hin zu ihren makroskopischen Eigenschaften eine bestimmende Rolle.

Stephen Hawking benutzt in seinem Buch Eine kurze Geschichte der Zeit eine Pfeil-Analogie zur Veranschaulichung des Spins: „Ein Teilchen mit dem Spin 0 ist ein Punkt: Es sieht aus allen Richtungen gleich aus. Ein Teilchen mit dem Spin 1 ist dagegen wie ein Pfeil: Es sieht aus verschiedenen Richtungen verschieden aus. Nur bei einer vollständigen Umdrehung (360 Grad) sieht das Teilchen wieder gleich aus. Ein Teilchen mit dem Spin 2 ist wie ein Pfeil mit einer Spitze an jedem Ende. Es sieht nach einer halben Umdrehung (180 Grad) wieder gleich aus. Entsprechend sehen Teilchen mit höherem Spin wieder gleich aus, wenn man Drehungen um kleinere Bruchteile einer vollständigen Umdrehung vollzieht. [Zudem gibt] es Teilchen […], die nach einer Umdrehung noch nicht wieder gleich aussehen: Es sind dazu vielmehr zwei vollständige Umdrehungen erforderlich! Der Spin solcher Teilchen wird mit ½ angegeben.“

Wichtige Experimente zum Spin beruhen oft darauf, dass ein geladenes Teilchen mit Spin auch ein magnetisches Moment besitzt. Beim Einstein-de-Haas-Effekt wird ein Eisenstab allein dadurch in eine makroskopische Drehbewegung versetzt, dass die Spins der in ihm befindlichen Elektronen anders ausgerichtet werden. Im Stern-Gerlach-Versuch ermöglichte der Elektronenspin den ersten direkten Nachweis der Richtungsquantelung. Die Effekte der magnetischen Kernspinresonanz bzw. Elektronenspinresonanz werden in Chemie (Kernspinresonanzspektroskopie NMR), Biologie und Medizin (Magnetresonanztomographie MRT) zur detaillierten Untersuchungen von Materialien, Geweben und Prozessen genutzt.

Anders als der halbzahlige Spin der Leptonen ergibt sich der ganzzahlige Spin des Photons (Lichtquant) schon aus der lange bekannten Existenz elektromagnetischer Wellen mit zirkulärer Polarisation. Ein direkter experimenteller Nachweis gelang 1936 anhand der Übertragung des Photonenspins auf ein makroskopisches Objekt, das daraufhin eine Drehbewegung zeigte.[3][4]


Referenzfehler: <ref>-Tags existieren für die Gruppe Anm., jedoch wurde kein dazugehöriges <references group="Anm." />-Tag gefunden.

  1. G. E. Uhlenbeck, S. Goudsmit: Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons. In: Naturwissenschaften. Band 13, Nr. 47, 1925, S. 953–954, doi:10.1007/BF01558878.
  2. D. M. Dennison: A Note on the Specific Heat of the Hydrogen Molecule. In: Proceedings of the Royal Society of London Series A. Band 115, Nr. 771, 1927, S. 483–486, doi:10.1098/rspa.1927.0105. Für den Zusammenhang zwischen Kernspin und spezifischer Wärme siehe Ortho- und Parawasserstoff. Wie ausgerechnet eine makroskopisch messbare Eigenschaft des H2-Moleküls zum Spin der Atomkerne führte, ist ausführlich beschrieben in Jörn Bleck-Neuhaus: Elementare Teilchen. Moderne Physik von den Atomen bis zum Standard-Modell (= Springer-Lehrbuch). Springer-Verlag, Berlin 2010, ISBN 978-3-540-85299-5, Kap. 7, doi:10.1007/978-3-540-85300-8_7.
  3. Mayer-Kuckuk, Theo: Atomphysik: Eine Einführung. Teubner, 1997, ISBN 978-3-519-43042-1, S. 127—128.
  4. Richard Beth: Mechanical Detection and Measurement of the Angular Momentum of Light. In: Physical Review. Band 50, 1936, S. 115–125, doi:10.1103/PhysRev.50.115.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne