Ein Spline n-ten Grades (auch Polynomzug) ist eine Funktion, die stückweise aus Polynomen höchstens n-ten Grades zusammengesetzt ist. Dabei werden an den Stellen, an denen zwei Polynomstücke zusammenstoßen (man spricht auch von Knoten), bestimmte Bedingungen gestellt, etwa dass der Spline (n-1)-mal stetig differenzierbar ist.
Handelt es sich bei dem Spline in all seinen Abschnitten um jeweils eine lineare Funktion, so nennt man den Spline linear (es handelt sich dann um einen Polygonzug), analog gibt es quadratische, kubische usw. Splines.
Zu den Pionieren der Spline-Erforschung gehören Isaac Jacob Schoenberg (ab den 1940er Jahren), Paul de Faget de Casteljau, Pierre Bézier und Carl de Boor.