Das Standardskalarprodukt oder kanonische Skalarprodukt (manchmal auch „euklidisches Skalarprodukt“ genannt) ist das in der Mathematik normalerweise verwendete Skalarprodukt auf den endlichdimensionalen reellen und komplexen Standard-Vektorräumen bzw. . Mit Hilfe des Standardskalarprodukts lassen sich Begriffe wie Winkel und Orthogonalität vom zwei- und dreidimensionalen euklidischen Raum auf höhere Dimensionen verallgemeinern. Wie jedes Skalarprodukt ist das Standardskalarprodukt eine positiv definite symmetrische Bilinearform (im komplexen Fall hermitesche Sesquilinearform) und invariant unter orthogonalen bzw. unitären Transformationen. Die vom Standardskalarprodukt abgeleitete Norm ist die euklidische Norm, mit deren Hilfe sich dann Begriffe wie Länge und Abstand in höherdimensionalen Vektorräumen definieren lassen.