Ein Tensor ist eine multilineare Abbildung, die eine bestimmte Anzahl von Vektoren auf einen Vektor abbildet und eine universelle Eigenschaft erfüllt.[1] Er ist ein mathematisches Objekt aus der linearen Algebra, das in vielen Bereichen, so auch in der Differentialgeometrie, Anwendung findet und den Begriff der linearen Abbildung erweitert. Der Begriff wurde ursprünglich in der Quantenphysik eingeführt und erst später mathematisch präzisiert.
In der Differentialgeometrie und den physikalischen Disziplinen werden meist keine Tensoren im Sinn der linearen Algebra betrachtet, sondern es werden Tensorfelder behandelt, die oft vereinfachend ebenfalls als Tensoren bezeichnet werden. Ein Tensorfeld ist eine Abbildung, die jedem Punkt des Raums einen Tensor zuordnet. Viele physikalische Feldtheorien handeln von Tensorfeldern. Das prominenteste Beispiel ist die allgemeine Relativitätstheorie. Das mathematische Teilgebiet, das sich mit der Untersuchung von Tensorfeldern befasst, heißt Tensoranalysis und ist ein wichtiges Werkzeug in den physikalischen und ingenieurwissenschaftlichen Disziplinen.