Todd-Klasse

Die Todd-Klasse ist eine Konstruktion aus der algebraischen Topologie der charakteristischen Klassen. Die Todd-Klasse eines Vektorbündels kann mit der Theorie der Chern-Klassen erklärt werden und existiert dort, wo diese existieren, besonders in der Differentialtopologie, der Theorie komplexer Mannigfaltigkeiten und in der algebraischen Geometrie. Grob gesagt wirkt sie wie eine reziproke Chern-Klasse beziehungsweise steht zu ihr in Beziehung wie ein Normalenbündel zu einem Konormalenbündel. Die Todd-Klasse spielt eine fundamentale Rolle in der Verallgemeinerung des Satzes von Riemann-Roch auf höhere Dimensionen, im Satz von Hirzebruch-Riemann-Roch oder Satz von Grothendieck-Hirzebruch-Riemann-Roch.

Sie wird nach dem englischen Mathematiker John Arthur Todd benannt, der einen Spezialfall 1937 in die algebraische Geometrie einführte, vor der Definition der Chern-Klassen. Die geometrische Idee wird manchmal auch Todd-Eger-Klasse genannt, die allgemeine Definition in höheren Dimensionen stammt von Friedrich Hirzebruch (in seinem Buch Topologische Methoden der algebraischen Geometrie).


From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne