7-limit tuning

Harmonic seventh, septimal seventh
Septimal chromatic semitone on C
9/7 major third from C to E7 upside-down.[1] This, "extremely large third", may resemble a neutral third or blue note.[2]
Septimal minor third on C

7-limit or septimal tunings and intervals are musical instrument tunings that have a limit of seven: the largest prime factor contained in the interval ratios between pitches is seven. Thus, for example, 50:49 is a 7-limit interval, but 14:11 is not.

For example, the greater just minor seventh, 9:5 (Play) is a 5-limit ratio, the harmonic seventh has the ratio 7:4 and is thus a septimal interval. Similarly, the septimal chromatic semitone, 21:20, is a septimal interval as 21÷7=3. The harmonic seventh is used in the barbershop seventh chord and music. (Play) Compositions with septimal tunings include La Monte Young's The Well-Tuned Piano, Ben Johnston's String Quartet No. 4, Lou Harrison's Incidental Music for Corneille's Cinna, and Michael Harrison's Revelation: Music in Pure Intonation.

The Great Highland bagpipe is tuned to a ten-note seven-limit scale:[3] 1:1, 9:8, 5:4, 4:3, 27:20, 3:2, 5:3, 7:4, 16:9, 9:5.

In the 2nd century Ptolemy described the septimal intervals: 21/20, 7/4, 8/7, 7/6, 9/7, 12/7, 7/5, and 10/7.[4] Archytas of Tarantum is the oldest recorded musicologist to calculate 7-limit tuning systems. Those considering 7 to be consonant include Marin Mersenne,[5] Giuseppe Tartini, Leonhard Euler, François-Joseph Fétis, J. A. Serre, Moritz Hauptmann, Alexander John Ellis, Wilfred Perrett, Max Friedrich Meyer.[4] Those considering 7 to be dissonant include Gioseffo Zarlino, René Descartes, Jean-Philippe Rameau, Hermann von Helmholtz, Arthur von Oettingen, Hugo Riemann, Colin Brown, and Paul Hindemith ("chaos"[6]).[4]

  1. ^ Fonville, John. "Ben Johnston's Extended Just Intonation – A Guide for Interpreters", p. 112, Perspectives of New Music, vol. 29, no. 2 (Summer 1991), pp. 106–137.
  2. ^ Fonville (1991), p. 128.
  3. ^ Benson, Dave (2007). Music: A Mathematical Offering, p. 212. ISBN 9780521853873.
  4. ^ a b c Partch, Harry (2009). Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments, pp. 90–91. ISBN 9780786751006.
  5. ^ Shirlaw, Matthew (1900). Theory of Harmony, p. 32. ISBN 978-1-4510-1534-8.
  6. ^ Hindemith, Paul (1942). Craft of Musical Composition, vol. 1, p. 38. ISBN 0901938300.

From Wikipedia, the free encyclopedia · View on Wikipedia

Developed by Nelliwinne