Aldol Addition | |||||||||
---|---|---|---|---|---|---|---|---|---|
Reaction type | Coupling reaction | ||||||||
Reaction | |||||||||
| |||||||||
Conditions | |||||||||
Temperature | -Δ, ~-70°C[a]
| ||||||||
Catalyst | −OH or H+
| ||||||||
Identifiers | |||||||||
Organic Chemistry Portal | aldol-addition | ||||||||
RSC ontology ID | RXNO:0000016 | ||||||||
The aldol reaction (aldol addition) is a reaction in organic chemistry that combines two carbonyl compounds (e.g. aldehydes or ketones) to form a new β-hydroxy carbonyl compound. Its simplest form might involve the nucleophilic addition of an enolized ketone to another:
These products are known as aldols, from the aldehyde + alcohol, a structural motif seen in many of the products. The use of aldehyde in the name comes from its history: aldehydes are more reactive than ketones, so that the reaction was discovered first with them.[2][3][4]
The aldol reaction is paradigmatic in organic chemistry and one of the most common means of forming carbon–carbon bonds in organic chemistry.[5][6][7] It lends its name to the family of aldol reactions and similar techniques analyze a whole family of carbonyl α-substitution reactions, as well as the diketone condensations.
Wurtz1872
was invoked but never defined (see the help page).Wurtz1872b
was invoked but never defined (see the help page).Wurtz1872c
was invoked but never defined (see the help page).
Cite error: There are <ref group=lower-alpha>
tags or {{efn}}
templates on this page, but the references will not show without a {{reflist|group=lower-alpha}}
template or {{notelist}}
template (see the help page).