where denotes the conductor's circumference, is the length of the circumference, and are vectors locating points along the circumference, and and are differentials segments along it. The equivalent radius allows the use of analytical formulas or computational or experimental data derived for antennas constructed from small conductors with uniform, circular cross-sections to be applied in the analysis of antennas constructed from small conductors with uniform, non-circular cross-sections. Here "small" means the largest dimension of the cross-section is much less than the wavelength .
^E.A. Wolff, Antenna Analysis, Chapter 3, John Wiley & Sons, New York, NY, Second Edition, 1966.
^David M. Drumheller K3WQ, The Antenna Equivalent Radius: A Model for Non-Circular Conductors, QEX, American Radio Relay League, Newington CT, 2017 March/April pp. 10ff.